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a b s t r a c t

The relationship which exists between Rayleigh’s distillation law and linear models of instrumental
isotopic fractionation in thermal ionization mass spectrometry is shown. If the process of isotope frac-
tionation in the mass spectrometer source occurs in terms of a Rayleigh’s distillation, and, within the
range of mass of isotopes of the element, the vapor/residue distribution coefficient is a linear function
of mass with a slope which is sufficiently small in absolute value, then the linear hypothesis of isotope
fractionation is fulfilled.

The model shows that the fractionation factor per amu, defined as the instantaneous difference between
the measured and true values of the isotope ratio, per unit of measured/true value and per unit of mass
difference between the two isotopes which define the ratio, can be interpreted as a function of two
parameters: the residual mass fraction of the sample on the filament, and the rate of change of the
distribution coefficient with mass. These two parameters can be calculated and, in particular, the value
of the residual mass fraction of the sample when the measured values of the isotopic ratios coincide
with the actual values can be calculated as a function of the rate of change with mass of the distribution
coefficient.

A linear model of instrumental isotopic fractionation can be derived from the exponential hypothesis
of fractionation, which can be also interpreted in terms of a Rayleigh’s distillation process, but where
mass is an exponential function of the distribution coefficient.

Experimental results of instrumental isotopic fractionation (up to 1% amu−1) of strontium in NIST stan-
dard reference material 987, loaded as a nitrate on a single tungsten filament, can be interpreted in terms
of the linear models of isotope fractionation (and therefore of Rayleigh’s distillation law) within experi-
mental error. They show: (i) changes in the vapor/residue distribution coefficient with mass in the range
−0.006 to −0.004 amu−1; (ii) approximately constant rates of sample consumption in the range of resid-

−1
ual mass fraction from ∼1 to ∼0.3–0.25, which are between 0.05 and 0.13% min ; (iii) values of the
residual mass fraction of the sample, when the measured values of the isotopic ratios coincide with the
true ones, between 0.3668 and 0.3671, which correspond to sample consumption of 63.3%.

Since the linear hypothesis of fractionation is fulfilled, the values of isotopic ratios of strontium in
the standard material can be determined. The global weighted averages of the weighted averages of
the results obtained in eleven runs in which 86Sr, 87Sr and 88Sr peaks were sampled are as follows:

0005
86Sr/88Sr = 0.119445 ± 0.0

. Introduction

In thermal ionization-source mass spectrometry of solid ele-
ents, the sample evaporates from a heated filament. Since the
ate of evaporation of each isotope does not only depend on its
espective abundance but also on mass, this process causes isotope
ractionation in the sample, and the measured values of the isotope
atios progressively change with time.

∗ Tel.: +39 049 827 2002; fax: +39 049 827 2010.
E-mail address: giancarlo.cavazzini@igg.cnr.it.

387-3806/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijms.2009.09.002
3, 87Sr/86Sr = 0.71016 ± 0.00019, and 87Sr/88Sr = 0.084826 ± 0.000040.
© 2009 Elsevier B.V. All rights reserved.

This effect cannot be totally controlled and reproduced, and the
accuracy of results is greatly limited, so that in laboratory routine
a calculation procedure is commonly adopted for some elements
(e.g., Sr and Nd), in which the measured values of the isotope ratios
are corrected according to the calculated shift of one of them from
the value which is assumed to be true for the sample. This correction
procedure is known as ‘normalization’, the corrected isotope ratios

are said to be ‘normalized to’ the ‘true’ value, and the calculation is
not based only on the assumption of one value for one of the isotopic
ratios of the element, but also on the assumption of a model for the
isotope instrumental fractionation which occurred during run in
the mass spectrometer.

http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:giancarlo.cavazzini@igg.cnr.it
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In the literature, four different models – which are called ‘laws’
have been proposed to describe the process of isotope fraction-

tion which occurs in a sample when it evaporates from a heated
etal surface. They are respectively known as Rayleigh’s law [1–4],

ower law [3–6] and Exponential law [3,4]. A Linear law can be also
erived, by series expansion and truncation to the first-order term

n the power-law equation [3,4,7–9], and other ‘linear’ approxi-
ations have also been proposed in the same way starting from

ayleigh’s, power- and exponential-law equations [3,5,9–14]. In
ubstance, the measured isotope ratios can be normalized accord-
ng to somewhat different schemes of calculation.

The linear hypothesis of fractionation substantially consists of
ssuming the value of a parameter, the fractionation factor per
mu, to be independent of the isotope ratio. The fractionation factor
er amu is often defined as the instantaneous difference between
he measured and true values of the isotope ratio, per unit of

easured/true value and per unit of mass difference between the
sotopes which define the ratio [3–5,7–14]. Therefore, calling F the
ractionation factor, and x, y, z, . . . the various isotope ratios of an
lement, the linear hypothesis of fractionation is expressed by

x = Fy = Fz = · · ·

his assumption was widely used in the 1960–1980s to normalize
he measured values of isotope ratios for instrumental fraction-
tion, and it can of course still be used, if fractionation is not
xtensive [3,4]. It is also commonly used in isotope dilution anal-
sis calculation schemes [5–11,15–18], and [14] has shown that
he values of the isotopic ratios of an element with at least three
sotopes can be obtained if instrumental fractionation follows the
inear hypothesis during run in the mass spectrometer.

Despite this extensive use, however, approaching to ‘linear
ehaviors’ of descriptions of the process of evaporation in terms of
ccepted physical models has not been sufficiently discussed and
nvestigated.

Nevertheless, a demonstration of the plausibility of the linear
ypothesis according to accepted physical models would certainly
roduce new interesting and valuable insights, as it would neces-
arily imply interpreting the fractionation factor from a physical
oint of view.

Habfast [13] investigated the problem of evaporation of iso-
opes from a hot filament by combining Rayleigh’s diffusion law
19] with Langmuir’s law of evaporation in a vacuum [20], show-
ng the relationship which exists between the Rayleigh–Langmuir
quation and the exponential model of Russel et al. [3], and the
ossibility of obtaining a ‘linearized Rayleigh’s law’ [13, Eq. (13)].

Following a similar line of approach, in this paper we inter-
ret the process of evaporation of isotopes in terms of Rayleigh’s
istillation law (RDL) [21]. In this model, the isotopes of the ele-
ent are considered as being different component elements within

he sample mixture, each characterized by a different value of a
apor/residue distribution coefficient.

In the first part, we show that if the process of isotope fraction-
tion in the sample during run in the mass spectrometer follows
he RDL and if in the range of mass of the isotopes of the element
he relationship between the vapor/residue distribution coefficient
nd mass is linear with a slope which is sufficiently small in abso-
ute value, then the linear hypothesis is quite closely fulfilled. The

athematical treatment shows: (1) the physical meaning which
ay be assigned to the parameter fractionation factor per unit of

tomic mass; (2) the possibility to estimate (a) the rate of change

ith mass of the vapor/residue distribution coefficient of the iso-

opes of the element, and (b) at any instant, the mass of sample on
he filament in terms of the residual fraction of the initial amount.
n the second part, experimental results of isotope fractionation
f strontium samples evaporating from single tungsten filaments,
ss Spectrometry 288 (2009) 84–91 85

which within the limit of error may be interpreted as following
the linear hypothesis of fractionation, are used to illustrate these
aspects.

2. Theory

Let us apply Rayleigh’s distillation law [21] to the process of
fractionation of isotopes during evaporation from a hot filament.
At a certain instant, the concentration of isotope i of the element in
the sample (residue) on the filament may be written as:

Ci = Ci,0f Di−1 (1)

where f is the mass fraction of residual sample on the filament
and Di is the distribution coefficient of the isotope between the
vapor phase and the phase on the filament, which is assumed to be
constant during the process.

At any instant, f is the same for all the isotopes of the element,
so that the i/j concentration ratio in the residue at a certain instant
is

Ci

Cj
=

(
Ci,0

Cj,0

)
f Di−Dj (2)

The i/j concentration ratio is proportional to the isotopic ratio. Thus,
we can write:

x = x0f Di−Dj (3)

where x, x0 are the instantaneous and initial (true) i/j isotope ratios
in the sample, respectively.

The rates of evaporation of the isotopes do not depend only on
their respective abundances but also on their distribution coeffi-
cients and, at any instant, the value of i/j isotope ratio in vapor
phase, xv, is related to x according to the equation:

xv =
(

Di

Dj

)
x (4)

Assuming no mass discrimination during ionization and extracting
ions from the source of the mass spectrometer, then xm = xv, where
xm is the measured i/j isotope ratio. Thus, Eq. (4) can be written as:

xm =
(

Di

Dj

)
x0f Di−Dj (5)

We do not know the exact relationship between distribution coef-
ficient and mass number during run in the mass spectrometer.
Nevertheless, for different nuclides of the same element, which also
fall in a narrow range of mass number, the distribution coefficient
values are probably very similar, and the relationship can probably
be approximated to very gentle-slope linear. For mass number i, we
can write:

Di = Dl + �(mi − ml) (6)

where l is the mass number of a convenient nuclide, and �, negative
and very small in absolute value, is the slope of the correlation. Thus,
difference Di − Dj can be written as:

Di − Dj = �(mi − mj) (7)

For samples which are pure or nearly pure elements, the distribu-

tion coefficient values are certainly close to one. Thus, mass l can
be ideally chosen such that Dl = 1, and Eq. (6) gives:

Di

Dj
= 1 + �(mi − ml)

1 + �(mj − ml)
(8)
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ince |�| is very small, the following approximation of (8) may be
ritten by binomial series truncating:

Di

Dj
= (1 + �)mi−mj (9)

hen, substituting (7) and (9) in (5), we obtain:

m = x0(1 + �)mi−mj f �(mi−mj) (10)

nd

0 = xm

(
a

f �

)mi−mj

, (11)

here a = 1/(1 + �).

.1. ‘Linear’ model of isotope fractionation

Adding xm to both members we have:

m − x0 = xm

{
1 −

[
1 +

(
a

f �
− 1

)]mi−mj
}

. (12)

ince |�| is very small, a/f � is positive and very close to 1, so that
a/f� − 1| is very small. Thus, we can again approximate to:

0 = xm

[
1 + (mi − mj)

(
a

f �
− 1

)]
(13)

q. (13) is identical to Dodson’s Eq. (1) [15,16], and, as emphasized
n [15,17], since |a/f� − 1| is very small, it may be interpreted as an
pproximation of the “power” law:

0 = xm

[
1 +

(
a

f �
− 1

)]mi−mj

. (14)

rom (13), we obtain:

xm − x0

xm(mj − mi)
= a

f �
− 1 (15)

.e., at any instant, the difference between the measured and initial
atios per unit of measured ratio and per unit of mass difference
etween the isotopes at the denominator and the numerator is the
ame for any isotope ratio.

The term of the first member of Eq. (15) is the fractionation
actor Fx per amu, and Eq. (15) shows how this parameter can be
nterpreted from a physical point of view in terms of RDL.

Since at any instant f and � (a) are the same for any isotope pair,
t also shows that the linear hypothesis is fulfilled, i.e., that the
ssumption of the independence of the fractionation factor per amu
rom the isotope ratio is justified in a first approximation.

.2. Linear s.s. model of isotope fractionation

In the previous section, we illustrated one of the linear approxi-
ations, which can be obtained by series expanding and truncating

he power-law equation of isotope fractionation [3–5,9] to the first
rder term.

Following the terminology in [9], we can use the term ‘linear’ to
ndicate this model of isotope fractionation and distinguish it from
he ‘true’, effectively linear or linear s.s. model of isotope fraction-
tion. This linear s.s. model is also an approximate model which
an be derived by series expanding and truncating the power-law
quation of isotope fractionation to the first-order term. The ‘linear’
nd the linear s.s. models, although almost equivalent, are however

ot completely equivalent.

In the case of the linear s.s. hypothesis of isotope fractionation,
he fractionation factor per amu is defined as the instantaneous dif-
erence between the measured and the true values of the isotope
atio per unit of true value and per unit of mass difference between
ss Spectrometry 288 (2009) 84–91

the two isotopes which define the ratio, and straight-line distri-
butions are expected between the measured values of any of two
isotope ratios during run in the mass spectrometer.

Starting from Eq. (11), and following a series expanding and
truncating procedure as illustrated in Section 2.1 we obtain:

xm − x0

x0(mj − mi)
= 1 − f �

a
. (16)

As in the case of Eq. (15), also Eq. (16) shows that, if the isotopic frac-
tionation process due to evaporation of the sample in the source of
the mass spectrometer follows RDL, and if the relationship between
the vapor/residue distribution coefficient and mass is linear in the
range of mass of the isotopes of the element, and the slope of this
linear function is sufficiently small in absolute value, the linear s.s.
model is reasonably fulfilled in a first close approximation.

2.3. Linear approximation of the exponential model of isotope
fractionation

A linear approximation can also be derived from the exponential
model of isotope fractionation. In the case of an isotope ratio x = i/j,
the exponential hypothesis of isotope fractionation is [3,4]:

x0

xm
=

(mj

mi

)p

, (17)

where p, which is usually called the fractionation exponent, changes
its value during run but has the same value at any instant for any
isotope ratio.

This equation can be changed into the following:

ln
(

x0

xm

)
= ln

(
1 + x0 − xm

xm

)
= p ln

(mj

mi

)
,

function ln(1 + k) can be series-expanded and, if k is sufficiently
small, the following approximation does hold:

x0 − xm

xm
≈ p ln

(mj

mi

)
(18)

i.e.,

xm − x0

xm ln(mi/mj)
≈ p. (19)

Since p has the same value at any instant for all the isotope ratios
of the element, Eq. (19) represents a linearization of the exponential
formula if we define the fractionation factor as:

Fx = xm − x0

xm ln(mi/mj)
(20)

Linear model (19) can also be obtained from RDL Eq. (5) as illus-
trated in the two previous sections, by assuming a relationship
between mass and vapor/residue partition coefficient which is
exponential, as follows:

Di = Dl + b ln
(

ml

mi

)
, (21)

where b is a positive constant.
Since Eq. (19) can be changed to:

xm − x0

xm(mj − mi)
≈ − p

mj
(22)

and Eq. (21) can be linearized to:

b

Di = Dl −

mi
(mi − ml), (23)

it can be concluded that the fractionation exponent p0 = p for f ∼ 1
is close to slope −b of the linear function which is obtained when
vapor/residue partition coefficient D is plotted vs. ln m.
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Table 1
86Sr/88Sr, 87Sr/86Sr and 87Sr/88Sr ratios in sample NBS 987 (11) calculated using the linear model of instrumental isotope fractionation which is derived from the exponential
hypothesis, and the straight-line best fit parameters of the xm vs. xm/ym and xm vs. ym distributions. All the errors are calculated by combining unfavourably the errors on
slope and y-intercept of each distribution, and the errors on masses of the isotopes which define the ratios which are involved in the distribution, and are expressed at 95%
c.l. The weighted average values are calculated from [26].

NBS 987 (11)
Distribution

86Sr/88Sr Err 87Sr/86Sr Err 87Sr/88Sr Err

(87Sr/86Sr)m vs. (87Sr/86Sr)m/(86Sr/88Sr)m 0.119464 0.000379 0.710093 0.005617 0.084833 0.000940
(88Sr/86Sr)m vs. (88Sr/86Sr)m/(86Sr/87Sr)m 0.119539 0.000956 0.709899 0.001401 0.084862 0.000846
(88Sr/86Sr)m vs. (88Sr/86Sr)m/(87Sr/88Sr)m 0.119500 0.001240 0.710020 0.009222 0.084836 0.000222
(87Sr/88Sr)m vs. (87Sr/88Sr)m/(88Sr/86Sr)m 0.119424 0.000664 0.710422 0.013820 0.084832 0.001178
(86Sr/87Sr)m vs. (86Sr/87Sr)m/(88Sr/86Sr)m 0.119488 0.000369 0.710017 0.005592 0.084841 0.000930
(86Sr/88Sr)m vs. (86Sr/88Sr)m/(88Sr/87Sr)m 0.119542 0.001238 0.709884 0.009198 0.084850 0.000221
(86Sr/88Sr)m vs. (86Sr/88Sr)m/(87Sr/86Sr)m 0.119490 0.000937 0.710015 0.001379 0.084841 0.000830
(88Sr/87Sr)m vs. (88Sr/87Sr)m/(86Sr/88Sr)m 0.119564 0.000665 0.709901 0.013612 0.084870 0.001156
(87Sr/86Sr)m vs. (87Sr/86Sr)m/(88Sr/86Sr)m 0.119505 0.000681 0.709963 0.006027 0.084849 0.001204
(87Sr/86Sr)m vs. (87Sr/86Sr)m/(87Sr/88Sr)m 0.119377 0.001404 0.710393 0.006285 0.084796 0.000247
(88Sr/86Sr)m vs. (88Sr/86Sr)m/(87Sr/86Sr)m 0.119613 0.001205 0.709677 0.003559 0.084891 0.001281
(88Sr/86Sr)m vs. (88Sr/86Sr)m/(88Sr/87Sr)m 0.119373 0.000676 0.710368 0.006025 0.084795 0.000239
(87Sr/88Sr)m vs. (87Sr/88Sr)m/(86Sr/88Sr)m 0.119509 0.000677 0.710030 0.010083 0.084848 0.000724
(87Sr/88Sr)m vs. (87Sr/88Sr)m/(87Sr/86Sr)m 0.119409 0.002364 0.710291 0.003513 0.084807 0.001260
(86Sr/87Sr)m vs. (86Sr/87Sr)m/(88Sr/87Sr)m 0.119593 0.001398 0.709736 0.006225 0.084871 0.000248
(86Sr/87Sr)m vs. (86Sr/87Sr)m/(86Sr/88Sr)m 0.119472 0.000682 0.710093 0.006055 0.084840 0.001208
(86Sr/88Sr)m vs. (86Sr/88Sr)m/(87Sr/88Sr)m 0.119575 0.000703 0.709791 0.006216 0.084869 0.000244
(86Sr/88Sr)m vs. (86Sr/88Sr)m/(86Sr/87Sr)m 0.119440 0.001199 0.710284 0.003635 0.084841 0.001285
(88Sr/87Sr)m vs. (88Sr/87Sr)m/(86Sr/87Sr)m 0.119634 0.002423 0.709663 0.003631 0.084891 0.001285
(88Sr/87Sr)m vs. (88Sr/87Sr)m/(86Sr/87Sr)m 0.119470 0.000682 0.710098 0.010130 0.084829 0.000726
(87Sr/86Sr)m vs. (86Sr/88Sr)m 0.119515 0.000232 0.709926 0.003458 0.084848 0.000578
(86Sr/87Sr)m vs. (88Sr/86Sr)m 0.119439 0.000235 0.710121 0.003501 0.084817 0.000585
(86Sr/88Sr)m vs. (87Sr/86Sr)m 0.119518 0.000461 0.709919 0.000669 0.084849 0.000407
(88Sr/86Sr)m vs. (86Sr/87Sr)m 0.119441 0.000472 0.710147 0.000708 0.084821 0.000420
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Weighted averages 0.11948 0.00011

We have therefore shown that linear approximations (15), (16)
nd (19) can be interpreted in terms of a process of Rayleigh’s distil-
ation, where a linear or an exponential relationship exists between

ass and distribution coefficient.
These linear models imply the occurrence of linear distribu-

ions in the xm vs. ym (Eq. (16)) and/or in xm vs. xm/ym (Eqs. (15)
nd (19)) diagrams. Thus, if during a mass spectrometer run dis-
ributions are observed in these diagrams, which are linear within
he limit of experimental error, we can interpret the result as if,
n the adopted experimental conditions, the isotopic instrumen-
al fractionation of the element were generated from a Rayleigh’s
istillation process.

If this occurs, and a sample is available, the isotopic composi-
ion of which is known, we can use the above equations to obtain
nteresting new information. We chose for this purpose the frac-
ionation results obtained for the evaporation of strontium of the
orldwide used Sr isotopic NIST standard reference material 987,

oaded as a nitrate on a single tungsten filament.
The 86Sr/88Sr ratio of Sr in SRM 987 (which is a Sr carbonate;

lkalimetric assay, weight percent 99.98 ± 0.02) was determined
y calibration for instrumental bias by means of samples of known
6Sr/88Sr ratios, gravimetrically prepared from chemically pure and
early isotopically pure 86Sr and 88Sr solutions. The 87Sr/86Sr and
4Sr/86Sr isotopic ratios were then determined by normalizing the
easured values to the value of the 86Sr/88Sr ratio [22].
At present, in the usual laboratory routine, the value of the

7Sr/86Sr ratio of this standard material is normalized to an
ssumed conventional ‘true’ 86Sr/88Sr value of 0.1194 [23]. In this
ase, a value close to 0.71025 is usually recognized as an index of
orrect instrumental behavior.
However, if the linear hypothesis of instrumental isotopic frac-
ionation is fulfilled within the limits of experimental error, it is
lso possible, as proposed in [14], to determine the values of iso-
opic ratios of this reference material avoiding the procedure of
ormalization.
0.71001 0.00040 0.084837 0.000083

3. Materials and methods

For extensive details about sample preparation and mass spec-
trometry conditions see [14]. In some runs 88Sr/86Sr and 87Sr/86Sr
ratios were measured by sampling the three peaks 86Sr, 87Sr and
88Sr; in the others, 88Sr/86Sr and 84Sr/86Sr ratios were measured
by sampling 84Sr, 86Sr and 88Sr. The intensity of the 86Sr reference
peak was generally in the range 300–500 mV. Small changes in fila-
ment current were sometimes required to maintain the 86Sr signal
approximately within this range of intensity.

The data acquisition program was [24]. Blocks of 30 ratios each
were sampled. Depending on sample, approximately 160–700 data
blocks were acquired to fractionate the 86Sr/88Sr ratio of approxi-
mately 1% u−1, where u is the unit of mass difference between the
isotopes which define the ratio (∼ from 0.1205 to 0.1181). Typical
percent errors on the mean in a block were <0.04 and <0.03 for
88Sr/86Sr and 87Sr/86Sr, respectively. Correction for resistor decay
constants was 750 ppm ratio and 300 ppm ratio for 88Sr/86Sr and
87Sr/86Sr, respectively.

4. Results and discussion

Fourteen mass spectrometric analyses were run. In eleven of
them 88Sr, 86Sr and 87Sr peaks were sampled, and in the others
88Sr, 86Sr and 84Sr peaks were sampled. All the run data give lin-
ear distributions in the xm vs. ym and xm vs. xm/ym diagrams within
the limit of experimental error, so that the isotopic fractionation
process can be interpreted in terms of the linear models of fraction-
ation and, consequently, in terms of a Rayleigh’s distillation process
in which a linear or exponential relationship exists between mass
and distribution coefficient.
Since the linear hypothesis is fulfilled by the data, it is possible to
determine the value of the isotopic ratios in the standard material
by means of the method in [14]. The values of the masses of the
isotopes used in the calculations are from Atomic Mass Data Center
(AMDC) files [25].
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Table 2
Certified values (CV) of 86Sr/88Sr, 87Sr/86Sr and 87Sr/88Sr isotopic ratios in NIST standard reference material 987 [23], and the values of these ratios calculated using the
linear model of instrumental isotope fractionation which is derived from the exponential hypothesis. Each determination is the weighted average of the 24 results which
are calculated from the respective xm vs. xm/ym and xm vs. ym distributions. The global weighted average values of the determinations (WA), and the respective MSWD and
probability values, are calculated from [26]. Errors at 95% c.l.

86Sr/88Sr Err 87Sr/86Sr Err 87Sr/88Sr Err

0.11937 0.00033 0.71050 0.00120 0.08480 0.00026
0.11945 0.00033 0.71050 0.00100 0.08488 0.00023
0.11952 0.00022 0.70992 0.00082 0.08485 0.00017
0.11949 0.00023 0.71001 0.00085 0.08484 0.00018
0.11949 0.00015 0.71001 0.00057 0.08484 0.00012
0.11946 0.00015 0.71009 0.00058 0.08483 0.00012
0.11934 0.00012 0.71048 0.00044 0.084785 0.000092
0.11942 0.00028 0.71016 0.00061 0.08482 0.00013
0.11938 0.00031 0.71040 0.00120 0.08482 0.00025
0.11951 0.00026 0.71002 0.00099 0.08485 0.00021
0.11948 0.00011 0.71001 0.00040 0.084837 0.000083

0.00019 0.084826 0.000040
= 0.45 Prob = 0.92 MSWD = 0.14 Prob = 0.999

0.00026 0.084780 0.000064

b
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WA 0.119445 0.000053 0.71016
MSWD = 0.52 Prob = 0.88 MSWD

CV 0.119352 0.000046 0.71034

The linear model which best fits the measured values is unam-
iguously the linear approximation of the exponential formula:
ince we know the values of the isotopic ratios from the NBS
ertificate and the masses of the isotopes from AMDC, we can cal-
ulate the slope and the y-intercept for any different xm vs. ym or
m vs. xm/ym distribution, and observe that the values calculated
ith the linear model (19) are definitely closer to those of the

lope and y-intercept obtained by straight-line best fit of the dis-
ributions than the values calculated using linear models (15) or
16).

As an example, let us consider distribution xm vs. xm/ym,
here x = 86Sr/87Sr and y = 88Sr/87Sr, and calculate the slope and

-intercept of this distribution starting from mass data and from
he isotopic values reported in the certificate according to linear

odels (15) and (19). In the case of model (15), the predicted slope
s m1 = 0.16933, and in that of model (19) the predicted value is

2 = 0.16837.
The values of the slope of this distribution in the eleven spec-

rometric runs calculated by straight-line best fit of the data points
re between 0.16760 and 0.16887, the arithmetic mean value is
.16833, and the weighted average 0.16834 ± 0.00023 (2�), which
re much closer to 0.16837 than to 0.16933.

Calculating the isotopic ratio values with the linear model
19) determines higher consistence and reproducibility of the
espective isotopic ratio values from the various distributions.
or each run, 24 distributions are usable to calculate the iso-
opic ratios values (an example is given in Table 1), and, for
ample NBS987 (11), Fig. 1a and b respectively show the val-
es of 86Sr/88Sr calculated using the linear model (19) from the
xponential hypothesis and the values of the same ratio calcu-
ated using the linear model (15) from the power hypothesis. The
espective weighted average values, calculated from [26], are also
hown.

Comparisons between these two figures clearly show the differ-
nce in reproducibility between the two linear models. Although
he mean value is substantially the same, in the case of the lin-
ar model from the power hypothesis the calculated values are
uch less easily reproducible, or not at all reproducible, within the

alculated error. This indicates that the distributions of measured
alues cannot be explained by the linear model from the power
ypothesis.
Table 2 shows, for each of the eleven runs in which 86Sr,
7Sr and 88Sr were sampled, the weighted average of the
4 results. The global weighted averages are also given, with
SWD and probability values: 86Sr/88Sr = 0.119445 ± 0.000053,

7Sr/86Sr = 0.71016 ± 0.00019, 87Sr/88Sr = 0.084826 ± 0.000040.

Fig. 1. (a and b) 86Sr/88Sr ratio in sample NBS987 (11) of NIST SRM 987 calculated
(a) using the linear model of instrumental isotope fractionation which is derived
from the exponential hypothesis and (b) using the linear model derived from the
power hypothesis.
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ig. 2. Fourteen determinations of the 86Sr/88Sr ratio in NIST SRM 987 calculated
sing the linear model of instrumental isotopic fractionation derived from expo-
ential hypothesis (see text for further explanations).

If the hypothesis on which the calculation model is based is ful-
lled during the mass spectrometer run, the isotopic ratio values
alculated from the various distributions are reproduced within the
alculated error, and therefore it is sufficient only one distribution
o determine the values of the isotopic ratios in the sample. Nev-
rtheless, although the isotopic ratio values calculated from the
arious distributions are identical within the limit of the calculated
rror, the average values differ. Therefore, a dispersion index of the
verage values of the isotopic ratios calculated from the 24 distri-
utions (e.g., standard deviation) seems to be useful in indicating
ow the hypothesis on which the calculation model is based was

ulfilled during the mass spectrometer run.
The lower the dispersion value, the more the hypothesis

n which calculation is based is fulfilled. Therefore it seem
lso reasonable to calculate the weighted average of the val-
es of arithmetic mean calculated for the runs affected by
he respective dispersion values, yielding the following val-
es: 86Sr/88Sr = 0.11947 ± 0.00011, 87Sr/86Sr = 0.71016 ± 0.00035,
7Sr/88Sr = 0.084839 ± 0.000041 (errors at 95% confidence level).
he global mean value of the 86Sr/88Sr ratio calculated for all the
ourteen runs, 0.119477 ± 0.000093, is shown in Fig. 2.

.1. Estimation of change of vapor/residue distribution coefficient
ith mass

We consider, as an example, ‘linear’ model of isotope fractiona-
ion (15). Similar calculations according to the other linear models
f fractionation give results which are not substantially different.

With Eq. (15) for initial conditions (f ≈ 1), we can estimate a
aximum value of � (� < 0) from the value of the fractionation factor
hich results from the measured values of the isotopic ratios in the
rst block/s of data:

≈ −�. (24)

In the adopted experimental conditions, the values of � esti-
ated accordingly, by comparing the ‘true’ value of the 86Sr/88Sr
atio (the certified or determined value) with the measured
alue are in the approximate range −0.006 to −0.004 amu−1.
ssuming that the value of the distribution coefficient is approx-

mately 1, the change in D with mass is approximately −0.6 to
0.4% amu−1.
Fig. 3. Relationship between residual mass fraction and time for sample NBS 987
(9). Residual mass fraction is calculated with � value, which can be estimated from
first data blocks (−0.0055 amu−1).

If the measured values of the ratios are observed to change
slowly with time during the initial part of the run, the calculated
� value, although generally lower in absolute value than the true
one, reasonably approximates the latter.

Linearization of the exponential relationship (21)–(23) gives
� ≈ −b/m, where m is any mass in the mass range of the element,
and we have approximately b between 0.35 and 0.55.

4.2. Calculation of residual mass fraction of the sample on the
filament and rate of sample consumption

As � is estimated, Eq. (15) can be used to calculate the value of
the residual mass fraction of sample f at any instant during the run.
We have:

f = [(1 + F)(1 + �)]−1/�. (25)

This allows us to study the relationship between residual mass
fraction and time t.

An example of the observed sample consumption in the adopted
experimental conditions is illustrated in Fig. 3, which refers to sam-
ple NBS 987 (9). This sample took about 1320 min to fractionate the
86Sr/88Sr ratio from the shown initial value of 0.1207–0.1181.

Although not as in the case of NBS 987 (9), in the spectromet-
ric runs sample consumption was approximately constant with
time in the range f ≈ 1 to f = 0.3–0.25. Least-squares linear regres-
sion calculations gave the slope values of function f(t) in the range
−0.0013 to −0.0005 min−1 (i.e., rates of consumption between 0.05
and 0.13% min−1), depending on time of total consumption T, with
R2 values generally higher than 0.98.

However, this part of the evolution trend does not correspond to
70–80% of the time needed for total consumption, but only, approx-
imately, 40–50%. Thus, it is not possible to estimate time T required
for total sample consumption from � values and from the observed
‘initial’ rate of change of the fractionation factor:(

dF

dt

)
f =1

≈ �

(1 + �)T
. (26)

Since it is reasonable, at least within part of the run, to expect
an approximately constant rate of sample consumption if the

operative conditions do not change, the constant rate of sample
consumption which is observed when the residual mass fraction
values are calculated by the � values estimated according to Eq. (24)
suggests that the evaporation process of strontium is adequately
described by Rayleigh’s distillation model.
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ing to changes in �. The value of f0 changes very smoothly with �,
0 G. Cavazzini / International Journal

If we choose values of � which are definitely lower than the
imit value suggested by the first blocks of data (for example, in the
ange −0.01 to −0.02 amu−1, instead of −0.006 to −0.004 amu−1),
he calculated f values are not linear with time. Nevertheless, such
alues are not reasonable.

In the second part of all runs, for values of residual mass frac-
ion lower than 0.3–0.25, df/dt invariably becomes lower. Behavior
s from roughly linear (as in the case of sample NBS 987 (9), Fig. 3) to
ery scattered, particularly if some adjustments of the filament cur-
ent are needed to maintain the signal within an acceptable range
f intensity. Since it does not seem reasonable to interpret this
hange of slope in terms of an abrupt change in � at f = 0.30–0.25,
or can a change in � explain a small part of the observed data,
he change in df/dt seems due to the change in the contribution
[(1 + F)−1/�]/dt in Eq. (25), i.e., to a change in dF/dt, which reflects
he observed change in the rate of change of the value of the isotopic
atio.

.3. Value of residual mass fraction when the measured values of
sotopic ratios coincide with true values

From Eq. (15) or (25), we can calculate the residual mass
raction f0 of the sample, at the instant when the measured
alues of the isotopic ratios ‘pass through’ the true values. If
= 0,

0 = (1 + �)−1/� (27)

ince in our experimental conditions the values of � estimated from
he first-block data are in the range −0.006 to −0.004 amu−1, f0
alculated according to Eq. (27) falls in the range 0.3668–0.3671.
his narrow range, which only differs by 0.1%, is because function
27) changes very smoothly with � within a large range of possible �
alues. If � is in the range −0.1 to −0.00001 amu−1 – a difference of
our orders of magnitude – f0 changes from 0.3487 to 0.3678, with
difference of only 5.5%. This means that the effect of discrepancy
etween the estimated and actual values of � in calculating f0 is
ubstantially reduced.

Therefore, according to the proposed model, 63.3–63.4% of the
ample is approximately consumed when the measured values of
he isotopic ratios coincide with the true ones.

Value f0 can be also calculated by Eq. (5), if we let xm = x0, and
he difference between the values obtained by Eqs. (27) and (5) for
he same value of � shows the overall effects of the approximations
sed in the calculation model after Eq. (5). For � in the range −0.006
o −0.004 amu−1, the difference in the f0 value is between 0.2 and
.3%.

Calculation of the value of the residual mass fraction of
he sample at the instant at which the measured value
f the isotopic ratio passes through the actual value was
reviously proposed by [13], who examined the different empir-

cal laws of isotopic instrumental fractionation and concluded
hat, in any case, for all empiric and approximate models,
0 = 1/e = 0.3678.

The values calculated in this work on the basis of the estimated
alues of � = dD/dm are very close to the value proposed by [13].
owever, an immutable f0 = 1/e value for each run, as suggested in

13], cannot be reasonable. Instead, the value of f0 must depend on
he value of the parameter which, in the run, discriminates the iso-
opes of the element from the viewpoint of mass, i.e., it must depend
n �, as shown in Eq. (27). This parameter depends on the adopted

xperimental conditions, and, within the experimental conditions,
ue to the empirical character of the TIMS technique, it is often
ifferent from run to run.

Clearly, if � tends to 0, f0 must tend to 1, because condition � = 0
eans no discrimination at all of the various isotopes of the ele-
ss Spectrometry 288 (2009) 84–91

ment from the viewpoint of mass during the evaporation process.
Instead, as � becomes higher and higher in absolute value, f0 must
progressively tend to 0.

5. Conclusions

The description of the process of evaporation of the isotopes
of an element in thermal ionization-source mass spectrometry in
terms of Rayleigh’s distillation law [21] leads to interpreting the
linear models of instrumental isotopic fractionation, derived as
approximations of the power-law model of fractionation [3–5],
as resulting from a linear dependence between mass and the
vapor/residue distribution coefficient, with sufficiently small abso-
lute values of slope �.

The fractionation factor per amu – defined as the instanta-
neous difference between the measured value of one isotope ratio
and the respective true (initial) value per unit of measured/true
value per unit of difference of atomic mass between the two
isotopes which define that ratio [3–5] – is a function of slope
� and of the residual mass fraction of the sample on the fila-
ment and, at a first approximation, is independent of the isotopic
ratio.

The model shows that it is possible to estimate the value of slope
� and the value, at any instant, of the residual mass fraction of the
sample, thus revealing the percent rate of sample consumption.

A linear model of fractionation can be derived as an approxi-
mation of the exponential hypothesis [3,4]. This model can also be
explained in terms of Rayleigh’s distillation law, resulting from a
relationship between mass and vapor/residue partition coefficient
which is exponential.

Experimental data on instrumental isotopic fractionation of
Sr in NIST SRM 987, loaded as a nitrate on single tungsten fila-
ment, show that the process may be interpreted in terms of the
linear hypothesis of fractionation, and, therefore, the process of
evaporation of the isotopes from the filament modeled in terms
of Rayleigh’s distillation law, with an approximately exponen-
tial relationship between mass and partition coefficient in the
mass range 86Sr–88Sr. Accordingly, the values of the 86Sr/88Sr,
87Sr/86Sr and 87Sr/88Sr ratios can be determined by the method
in [14], yielding the following values for the global weighted
averages of the weighted averages of the results calculated
from the various distributions: 86Sr/88Sr = 0.119445 ± 0.000053,
87Sr/86Sr = 0.71016 ± 0.00019 and 87Sr/88Sr = 0.084826 ± 0.000040
(errors at 95% confidence level).

In the adopted experimental conditions, the change in D with
mass is calculated in the range −0.006 to −0.004 amu−1 (reason-
ably, −0.6 to −0.4% amu−1), and the dependence of the residual
mass fraction on time is calculated to be approximately linear
within a large range of residual mass fraction of the sample from
f ∼ 1 to f ∼ 0.3–0.25, with rates of sample consumption between
0.05 and 0.13% min−1. Since it is reasonable, if operative condi-
tions are not changed, to expect for approximately constant rates of
sample consumption, at least during part of the mass spectrometer
run, this suggests that evaporation (and isotopic fractionation) pro-
cesses are adequately described in terms of Rayleigh’s distillation
model.

The residual mass fraction of the sample at the instant at which
the measured value of the isotopic ratios coincide with the true
value, f0, is a function of slope �, and changes from run to run accord-
showing very little variability over a large range of possible � val-
ues (a change of 5.6% for � from −0.1 to −0.00001 amu−1). f0 can be
calculated by estimating � from the fractionation factor data, and
is in the range 0.366–0.367 in the operative conditions used in this
study.
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